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Abstract
The stability of flows of Newtonian fluids induced by a surface acoustic wave
(SAW) along the deformable walls in a confined parallel-plane microchannel
or slab in the laminar flow regime is investigated. The governing equation
which was derived by considering the weakly nonlinear coupling between
the deformable wall and viscous flow is linearized and then the eigenvalue
problem is solved by a numerical code together with the associated interface
and boundary conditions. The value of the critical Reynolds number was found
to be near 613.26 which is much smaller than the static-wall case: 5772 for
conventional pressure-driven flows.

PACS numbers: 47.20.Ma, 02.30.Mv, 43.35.Pt, 68.08.−p, 47.62.+q, 43.38.Rh,
43.25.Nm

1. Introduction

The application of linear and/or nonlinear surface acoustic waves (SAW, say, nondispersive
Rayleigh waves and dispersive perturbed Rayleigh waves [1]) and their relevant studies
have been reported in diverse fields such as condensed matter physics, materials science
or surface chemistry/physics, environmental, communication and sensor technologies, etc
[1–3]. Fundamental or theoretical (using the Boltzmann equation) and experimental studies
of interphase nonlocal transport phenomena in a gas–solid system which appear due to the
propagation of a surface acoustic wave (SAW) in a solid-wall had been performed since
late 1980s [4–6]. Preliminary theoretical results in a free molecular regime showed some
disagreement with other approaches [4–6].

Meanwhile, the emerging interest in current applications of MEMS
(Microelectromechanical system) [7, 8] and especially microfluidics [9–11] which require
handling fluids has stimulated some new areas of research: development of new methods
for fabricating fluidic systems, invention of flexible components from which to assemble
functionally complex fluidic devices and examination of the fundamental behaviour
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of fluids in microchannels [12, 13]. The challenges are how to overcome or control
macroscopically ambient or environmental noises which are of significance in microdomains
[14]. Considering the soft or flexible organic ICs [15–17], which are not so rigid as
the traditional one (e.g. metals or alloys) and the typical micron-thickness of the wall
(even the material is silicon-based), we shall take into account the nonsteady effect due
to non-static noise upon the walls as the fluid is flowing within these rather thin or soft
walls [15–17].

Recently researchers have started to investigate the transport within a soft or deformable
microslab which will be common in microdomains of bio-MEMS applications and found
interesting physical behaviours due to the weakly nonlinear coupling between the surface
wave and the slip velocity along the wall [18–23].

To further study the stability issues for laminar flows of Newtonian fluids in microdomains,
we solve the eigenvalue problem by a numerical code based on the spectral method for
obtaining the neutral boundary curves. The flow is induced by a sinusoidal wave travelling
down the walls of a 2D microchannel of constant width and rather long length or a microslab
[19, 20, 22, 23].

We first adopt the continuum-mechanics approach and simplify the original system
of equations (related to the momentum and mass transport) to one single higher order
quasi-linear partial differential equation in terms of the unknown stream function. In this
study, we shall assume that the Mach number Ma � 1, and the governing equations
are the incompressible Navier–Stokes equations which are solved together with the no-
slip boundary conditions along the walls [19, 20, 22, 23]. Note that if the thickness
of the flexible wall is smaller than the wavelength of SAW then the SAW is dispersive.
We introduce the perturbation technique so that we can obtain the related governing
equations and then solve the relevant eigenvalue problem approximately. That is to say,
after linearizing the originally derived nonlinear partial differential equation, we then solve
a fourth-order quasi-linear complex ordinary differential equation together with the wavy
boundary or interface conditions by verified numerical methods [24–26, 28]. We can finally
get the critical Reynolds number corresponding to the specific wave number after intensive
calculations.

2. Formulations

2.1. Derivation of the governing equation and boundary conditions

We consider a 2D channel of uniform thickness filled with a homogeneous Newtonian fluid.
The flat-plane walls of the channel are rather flexible, on which are imposed travelling
sinusoidal waves of small amplitude a (due to SAW). The vertical displacements of the
upper and lower walls (y = d and y = −d) are thus assumed to be η and −η, respectively,
where η = a cos 2π

λ
(x − ct), λ is the wavelength and c the SAW speed. x and y are Cartesian

coordinates, with x measured in the direction of wave propagation and y measured in the
direction normal to the mean position of walls. We note that, if the thickness of the flexible
wall is presumed to be not smaller than the wavelength of SAW, we then consider the treatment
of nondispersive SAWs in homogeneous media (cf page 43 or 45 of [1]). The schematic plot
of above features is shown in figure 1.

For the easy treatment of tedious mathematical manipulations we simplify equations
by introducing dimensionless variables. We have a characteristic velocity c and three
characteristic lengths a, λ and d. The following variables based on c and d are thus
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Figure 1. Schematic diagram of the wavy motion of the flexible walls.

introduced:

x ′ = x

d
y ′ = y

d
u′ = u

c
v′ = v

c

η′ = η

d
ψ ′ = ψ

cd
t ′ = ct

d
p′ = p

ρc2

where ψ is the dimensional stream function. The amplitude ratio ε, the dimensionless wave
number α, and the Reynolds number Re are defined by

ε = a

d
α = 2πd

λ
Rec = cd

ν
.

From now on, we drop the prime in our notation for the dimensionless variables. We shall
seek a solution in the form of a series in the parameter ε:

ψ = ψ0 + εψ1 + ε2ψ2 + · · · ∂p

∂x
=

(
∂p

∂x

)
0

+ ε

(
∂p

∂x

)
1

+ ε2

(
∂p

∂x

)
2

+ · · ·

with the velocity v = (u, v), where u = ∂ψ/∂y, v = −∂ψ/∂x. The 2D (x- and y-) momentum
equations

∂v
∂t

+ v · ∇v = −∇p +
∇2v
Rec

and the equation of continuity: ∇ · v = 0 are written in terms of the stream function ψ only
by eliminating the pressure (p) term. The final governing equation is

∂

∂t
∇2ψ + ψy∇2ψx − ψx∇2ψy = 1

Rec

∇4ψ ∇2 ≡ ∂2

∂x2
+

∂2

∂y2
(1)

and subscripts indicate the partial differentiation. Thus, we have

∂

∂t
∇2ψ0 + ψ0y∇2ψ0x − ψ0x∇2ψ0y = 1

Rec

∇4ψ0 (2)

∂

∂t
∇2ψ1 + ψ0y∇2ψ1x + ψ1y∇2ψ0x − ψ0x∇2ψ1y − ψ1x∇2ψ0y = 1

Rec

∇4ψ1 (3)

∂

∂t
∇2ψ2 + ψ0y∇2ψ2x + ψ1y∇2ψ1x + ψ2y∇2ψ0x − ψ0x∇2ψ2y

− ψ1x∇2ψ1y − ψ2x∇2ψ0y = 1

Rec

∇4ψ2 (4)

and other higher order terms. The gas is subjected to boundary conditions imposed by the
symmetric motion of the walls and the no-slip condition: u = 0, v = ±∂η/∂t at y = ±(1+η).
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The boundary conditions may be expanded in powers of η and then ε:

ψ0y |1 + ε{cos α(x − t)ψ0yy |1 + ψ1y |1}

+ ε2

{
ψ0yyy |1

2
cos2 α(x − t) + ψ2y |1 + cos α(x − t)ψ1yy |1

}
+ · · · = 0

ψ0x |1 + ε{cos α(x − t)ψ0xy |1 + ψ1x |1} + ε2

{
ψ0xyy |1

2
cos2 α(x − t)

+ cos α(x − t)ψ1xy |1 + ψ2x |1
}

+ · · · = −εα sin α(x − t).

(5)

Equations (2) and (5) above, together with the condition of symmetry (for u-velocity profile)
and a uniform constant pressure-gradient in the x-direction for the flow of order 0 (if
(∂p/∂x)0 = 0, then the gas is originally quiescent; this corresponds to a free pumping
case [18–20, 22, 23]), yield:

ψ0 = K0

[
y − y3

3

]
= 0 K0 = Rec

2

(
−∂p

∂x

)
0

(6)

which is, in fact, a plane Poiseuille flow;

ψ1 = 1
2 {φ(y) eiα(x−t) + φ∗(y) e−iα(x−t)} (7)

where the asterisk denotes the complex conjugate. A substitution of ψ1 into equation (3)
yields{

d2

dy2
− α2 + iα Rec[1 − K0(1 − y2)]

}(
d2

dy2
− α2

)
φ − 2iαK0 Recφ = 0. (8)

The associated boundary conditions are

φy(±1) = 2K0 φ(±1) = ±1. (9)

Note that, once we set K0 = 0, we then obtain(
d2

dy2
− α2

) (
d2

dy2
− ᾱ2

)
φ = 0 ᾱ2 = α2 − iα Rec.

After lengthy algebraic manipulations, we obtain

φ = c0 eαy + c1 e−αy + c2 eᾱy + c3 e−ᾱy

where c0 = (A + A0)/det, c1 = −(B + B0)/det, c2 = (C + C0)/det, c3 = −(T + T0)/det;

det = Aeα − Be−α + Ceᾱ − T e−ᾱ

(see [18, 22] for the details).
These terms and the determination of ψ2 are useful for the calculation of the mean flux

(averaged over one wavelength of the SAW) which has been reported in [18, 23] for cases of
K0 = 0 (free pumping) but not relevant to present stability problems.

2.2. Numerical approaches

To obtain the stability characteristics for SAW-driven flows by using verified codes developed
before [24, 25] for calculating the Orr–Sommerfeld spectra, we transform equation (8) into
the Orr–Sommerfeld form by rescaling and redimensionalization of physical parameters and
variables mentioned before (e.g., the careful selection of K0 and c).

Note that, the plane Poiseuille flow is one of the fundamental base-flow types for the
wall-bounded parallel-flow-instability research regime. If considering the linear stability of
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the laminar flow, the usual approach is through the Orr–Sommerfeld (OS) equation [24–27].
Following the usual assumptions of linearized stability theory [24–27], we have vi(xi, t) =
v̄i(xi) + v′

i (xi, t), and similarly, p(xi, t) = p̄(xi) + p′(xi, t) for the velocity and pressure
terms in the incompressible Navier–Stokes equations [27]. Then by substituting these into
dimensionless 2D Navier–Stokes equation, and eliminating the pressure terms, the linearized
equation (in terms of the stream function of the disturbance) or the so-called Orr–Sommerfeld
equation [26, 27], which governs the variation of the disturbances is

(D2 − α2)2φ = iα Re[(ū − σ)(D2 − α2)φ − (D2ū)φ] (10)

where D = d/dy, Re = ρumaxd/µ is the Reynolds number based on half channel-width
(d), umax is the maximum velocity across the channel-width; ū = 1 − y2 is the (mean) basic
velocity profile of the flow for −1 � y � 1. σ is a complex value or the eigenvalue we like to
obtain. The stream function for the disturbance, � , such that u′ = −∂�/∂y, v′ = −∂�/∂x,
were assumed to have the form �(x, y, t) = φ(y) exp[iα(x − σ t)] in the usual normal-mode
analysis, α is wave number (real) and σ is σr + iσi . This is a kind of Tollmien–Schlichting
transversal waves, σr is the ratio between the velocity of propagation of the wave of perturbation
and the characteristic velocity, σi is called the amplification factor and α equals 2πL−1, where
L is the wavelength of the Tollmien–Schlichting perturbation [27].

Boundary and interface conditions for φ or Dφ are already defined in equation (9) and
are not the same as previous approaches [24–26], i.e., φ(±1) = Dφ(±1) = 0.

The eigenvalue problem raised above could then be solved by using the verified code
[24, 25], which followed and adopted the spectral method [28] based on the Chebyshev-
polynomial-expansion approach, after the equation and boundary conditions are discretized.
The algebraic equation is

1

24

N∑
p=n+4

p≡n(mod 2)

[p3(p2 − 4)2 − 3n2p5 + 3n4p5 + 3n4p3 − pn2(n2 − 4)2]ap

−
N∑

p=n+2
p≡n(mod 2)

{[
2α2 +

1

4
iα Re(4f − 4σ − cn − cn−1)

]
p(p2 − n2)

− 1

4
iα Re cnp[p2 − (n + 2)2] − 1

4
iα Re dn−2p[p2 − (n − 2)2]

}
ap

+ iα Re n(n − 1)an + {α4 + iα Re[(f − σ)α2 − 2]}cnan

− 1

4
iα3 Re[cn−2an−2 + cn(cn + cn−1)an + cnan+2] = 0 (11)

for n � 0, f = 1, where cn = 0 if n > 0, and dn = 0 if n < 0, dn = 1 if n � 0. Here, σ ≡ C

is the complex eigenvalue, N is the number of maximum expansion terms
(
φ = ∑N

n anTn

)
for

the Chebyshev polynomial: Tn, n is the corresponding index for Tn [24–26, 28]. cn and dn are
the control constants. The boundary conditions become

N∑
n=0

n≡0(mod 2)

an = 1
N∑

n=0
n≡0(mod 2)

n2an = 2K0 (12)

N∑
n=1

n≡1(mod 2)

an = −1
N∑

n=1
n≡1(mod 2)

n2an = 2K0. (13)
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Figure 2. SAW effects (K0 = 1) on the neutral stability boundary of the plane Poiseuille flow.
Recr is the critical Reynolds number of the flow. For SAW-driven case, Recr ∼ 1439.

The matrices thus formed are not diagonally dominated and symmetric [24, 25, 29]. Before we
perform floating-point computations to get the complex eigenvalues, we should precondition
these complex matrices to get less errors. Here we adapt Osborne’s algorithm [29] to
precondition these complex matrices by diagonal similarity transformations of the matrix
(errors are in terms of the Euclidean norm of the matrix) designed to reduce its norm [24, 25].
The details of this algorithm could be traced in [24, 25]. The form of the reduced matrix is
upper Hessenberg. We then perform the stabilized LR transformations for these matrices to
get the eigenvalues σ or C = Cr + i Ci (please see also [24, 25] for the details).

3. Results and discussion

The preliminary verified results of this numerical code had been reported [24, 25] for the
cases of no-slip boundary conditions (plane Poiseuille flows without SAW propagating along
the walls) in comparison with the benchmark results of Orszag’s [26]. For example, for
Re = 10000.0, α = 1.0 of the test case: plane Poiseuille flow [26], we obtained the same
spectrum as 0.23752648 + i 0.00373967 for Cr + i Ci [24, 25] which Orszag obtained from
CDC 7600 using the spectral method in 1971 [26].

We subsequently calculated those spectra for the SAW-driven flow with the associated
dynamic and/or kinematic boundary (interface) conditions by carefully adjusting the Reynolds
number (Re) and the wave number (α). After intensive calculations, we finally obtain the
neutral boundary curves for specific Re and α and plot them in figure 2. K0 was fixed as
one here. For comparison with the neutral stability curve obtained for flows without SAW-
driven mechanism (there is no SAW propagating along the walls), we put both curves in
one figure. Note that each curve is composed of two branches (one is upper and the other
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Figure 3. SAW effects (K0 = 1 and 2) on the neutral stability boundary of the plane Poiseuille
flow. Recr is the critical Reynolds number of the flow. For K0 = 2 case, Recr ∼ 613.26 (dashed
curve).

is lower, they coalesce into a critical point (Recr and αcr )). For those flows with Re and α

falling within these branches or the boundary, perturbations amplify temporarily [25–27] and
thus they are unstable. That is to say, any small disturbances will amplify in a finite time
and/or in the downstream when Re and α are larger than the critical ones (Recr w.r.t. the
specific αcr ) which are fixed upon the curves. We have roughly Recr = 1439 for SAW-driven
flows when K0 = 1. The critical Reynolds number for conventional flows (without SAW
propagating along the walls) is around 5772 [26]. To further illustrate the SAW effects, we
plot cases of K0 = 1 and K0 = 2 in figure 3. As K0 increases, Recr decreases and becomes
613.26.

In brief conclusion, we can observe that SAW triggers the instability of the laminar flow
much earlier (Recr ∼ 613) which is not favourable for the flow control in some applications of
MEMS or bio-MEMS, such as drag-reduction of micro air vehicles [30] or DNA manipulations
in ambient fluids (in contrast, it will be useful for micro-flow mixing or osmosis). Our
observation might be interpreted as due to the coupling between the flexible wall-boundary
and the inertia of the acoustic-streaming flow. We hope that in the future we can investigate
other issues of diverse SAW applications [31–33] using the present or more advanced
approach.
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